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In high-quality nanowires, quantum confinement of the transverse electron motion splits the band of single-
electron states in a series of subbands. This changes in a qualitative way the scenario of the magnetic-field
induced superconductor-to-normal transition. We numerically solve the Bogoliubov-de Gennes equations for a
clean metallic cylindrical nanowire at zero temperature in a parallel magnetic field and find that for diameters
D�10–15 nm, this transition occurs as a cascade of subsequent jumps in the order parameter �this is opposed
to the smooth second-order phase transition in the mesoscopic regime�. Each jump is associated with the
depairing of electrons in one of the single-electron subbands. As a set of subbands contribute to the order
parameter, the depairing process occurs as a cascade of jumps. We find pronounced quantum-size oscillations
of the critical magnetic field with giant resonant enhancements. In addition to these orbital effects, the para-
magnetic breakdown of Cooper pairing also contributes but only for smaller diameters, i.e., D�5 nm.
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I. INTRODUCTION

High-quality superconducting nanostructures as, e.g.,
single-crystal Sn nanowires,1 polycrystalline �but made of
strongly coupled grains� Al nanowires,2,3 and single-
crystalline atomically uniform Pb nanofilms4–7 have recently
been fabricated. It was possible to minimize the disorder
such that the electron mean free path was about or larger
than the specimen thickness.2,3,7 In this case the scattering on
nonmagnetic imperfections influences only the electron mo-
tion parallel to the wire/film, while the perpendicular elec-
tron motion is governed by the transverse-size quantization.
Indeed, photoemission spectra of ultrathin single-crystal Pb
films showed clear signatures of the splitting of the electron
band into a series of subbands due to the transverse-size
quantization.4 In the presence of minimal disorder the so-
called Anderson theorem8 �see, also, discussion in Ref. 9�
controls the effect of nonmagnetic impurities. Thus, one can
expect that the study of a clean system with quantized trans-
verse electron motion can capture important issues concern-
ing the impact of quantum confinement on the superconduct-
ing characteristics in high-quality nanowires/nanofilms.

The single-electron subbands appearing due to the trans-
verse quantization move in energy with changing specimen
thickness. When the bottom of a subband passes through the
Fermi surface, the density of single-electron states at the
Fermi level increases abruptly. This results in size-dependent
superconducting resonances10 and in quantum-size oscilla-
tions of the superconducting properties as function of the
thickness. Recently such quantum-size oscillations in the
critical temperature Tc of superconducting Pb nanofilms were
observed at a high level of experimental precision and
sophistication.4,5 Quantum-size superconducting resonances
were shown to be responsible for an increase in the super-
conducting transition temperature in Al and Sn nanowires
with decreasing thickness.11

The transverse quantization of the electron motion should
strongly influence the superconducting-to-normal phase tran-

sition driven by a magnetic field in such high-quality
nanowires/nanofilms. In the present paper we limit ourselves
to nanowires in a parallel magnetic field and ignore the vor-
tex formation because vortices cannot nucleate in very thin
superconducting wires.

According to the Ginzburg-Landau �GL� theory,12,13 the
critical magnetic field is expected to increase as 1 /D in the
Meissner state, with D the diameter of the mesoscopic wire.
Furthermore, the superconducting-to-normal phase transition
in a magnetic field is of second order for such mesoscopic
wires while being of first order in bulk �for type I
superconductors�.8 It is a general characteristic of the GL
theory that this transition becomes of second order in meso-
scopic specimens.8,14 Recent calculations based on the
Bogoliubov-de Gennes �BdG� equations15 for wires with di-
ameters 20–200 nm confirmed the GL result and revealed a
smooth superconducting-to-normal transition in a parallel
magnetic field at any temperature below Tc. This is in agree-
ment with recent experimental data on Sn1,16 and Zn17 nano-
rods. Hence, one may conclude that effects of the transverse
quantization of the electron motion are not significant for
metallic superconducting wires with width larger than 20
nm.

In the present paper we show that the situation changes
dramatically for smaller widths. Our analysis is based on a
numerical self-consistent solution of the BdG equations for a
clean cylindrical metallic nanowire. We predict that at zero
temperature the superconducting-to-normal transition driven
by a magnetic field parallel to the nanowire, occurs as a
cascade of jumps in the order parameter �with clear signa-
tures of hysteretic behavior� for diameters D�10–15 nm.
This qualitative change is accompanied by pronounced
quantum-size oscillations of the critical magnetic field with
large enhancements at the points of the superconducting
resonances. In addition to these orbital effects, we found that
Pauli paramagnetism can also contribute but its role is only
significant for smaller diameters, i.e., D�5 nm.
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II. BOGOLIUBOV-DE GENNES EQUATIONS

In the clean limit the BdG equations8 read

Enun�r� = Ĥeun�r� + ��r�vn�r� , �1a�

Envn�r� = ���r�un�r� − Ĥe
�vn�r� , �1b�

where ��r� stands for the superconducting order parameter
�� for complex conjugate�, En is the quasiparticle energy,
un�r� and vn�r� are the particlelike and holelike wave func-
tions. The single-electron Hamiltonian appearing in Eqs. �1a�
and �1b� is given by

Ĥe =
1

2me
�− i� � −

e

c
A�2

− EF, �2�

with me the electron band mass �can be set to the free-
electron mass without loss of generality�, and EF the Fermi
level. The BdG should be solved in a self-consistent manner,
together with the self-consistency relation

��r� = g�
n

un�r�vn
��r��1 − 2fn� , �3�

with g the coupling constant and fn= f�En� the Fermi
function.8

An important issue is the range of the states included in
the sum in Eq. �3�. The usual prescription concerns the qua-
siparticles with positive energies En. At the same time the
corresponding single-electron energy �n should be located in
the Debye window, ��n����D with �D the Debye frequency
and

�n =� d3r�un
��r�Ĥeun�r� + vn

��r�Ĥevn�r�	 . �4�

However, in the presence of a magnetic field, this prescrip-

tion is modified: �Ĥe�A=0 is used rather than Ĥe in Eq. �4�. It
is well known that the selection ��n����D appears as a result
of the delta-function approximation for the effective
electron-electron interaction. Such an approximation ne-
glects a complex structure of the Fourier transform of the
pair interaction. The problem is cured by the well-known
cutoff in the canonical-momentum space. Such a cutoff re-

sults in the above selection rule for �n with Ĥe replaced by

�Ĥe�A=0 �see, for instance, Refs. 8 and 15�. Second, the re-
quirement of positive quasiparticle energies has to be weak-
ened in the presence of a magnetic field. Namely, one needs
to include the states having positive quasiparticle energies
only at zero magnetic field. This allows one to investigate
also the regime of gapless superconductivity when the pres-
ence of quasiparticles with negative energies manifests the
depairing reconstruction of the ground state �see Eq. �9� be-
low and Appendix	.

Due to transverse quantum confinement we set

�un�r��r�S = �vn�r��r�S = 0 �5�

on the wire surface. Periodic boundary conditions are used
along the nanowire. Screening of the external magnetic field
can be neglected for narrow wires. Then, for a constant mag-

netic field parallel to the nanocylinder, H
, it is convenient to
use the well-known Coulomb gauge. Thus, for cylindrical
wires we have ��r�=���� with � ,� ,z the cylindrical coor-
dinates �below the order parameter is chosen as a real quan-
tity�. The set of relevant quantum numbers is n= �j ,m ,k�,
with j the quantum number associated with �, m the azi-
muthal quantum number, and k the wave vector of the quasi-
free electron motion along the nanowire. In this case the
particlelike and holelike wave functions can be represented
as

un�r� = ujmk���
eım�

2	

eikz

L
, �6a�

vn�r� = v jmk���
eım�

2	

eikz

L
, �6b�

with L the length of the nanowire. Inserting Eqs. �6a� and
�6b� into the BdG Eqs. �1a� and �1b� and using an expansion
in terms of the Bessel functions �see details in Ref. 18�, the
problem is reduced to the diagonalization of a matrix.

III. DISCUSSION OF NUMERICAL RESULTS

A. Resonances in the critical magnetic field

At a superconducting resonance the main contribution to
the different superconducting quantities comes from the sub-
band �or subbands� whose bottom passes through the Fermi
surface. For cylindrical wires, the subbands with the same
�m� are degenerate for H
 =0 and, hence, any size-dependent
resonant enhancement of the order parameter �e.g., the en-
ergy gap and the critical temperature� can be specified by the
set �j , �m�� in the absence of a magnetic field. Due to
quantum-size oscillations in the pair-condensation energy,
we get corresponding oscillations in the critical magnetic
field whose resonant enhancements can also be labeled by
�j , �m��. Figure 1�a� shows the critical field Hc,
 calculated
self-consistently from Eqs. �1a� and �1b� at zero temperature
�T=0� for an aluminum nanocylinder with diameter D. Note
that Hc,
 is set as the magnetic field above which the spatially

averaged order parameter �̄ drops below 0.01�bulk, with
�bulk the bulk gap. Here, we consider as an example Al and
take8 ��D=32.31 meV and gN�0�=0.18, where N�0� stands
for the bulk density of states. For this choice �bulk
=0.25 meV. The effective Fermi level is set to EF=0.9 eV,
which is used together with the BdG equations within the
parabolic band approximation.19 As seen, Hc,
 exhibits huge
enhancements as compared to the bulk critical magnetic field
Hc,bulk=0.01 T �to simplify our discussion, we show first the
results for extremely narrow quantum wires�. Resonances in
Hc,
 are found to be very dependent on D and �m�. The states
with large �m� are more strongly influenced by H
 and, so, the
resonances in Hc,
 governed by large �m� are, as a rule, less
pronounced. In contrast, the resonances controlled by m=0
are very stable. For instance, a superconducting solution to
Eqs. �1a� and �1b� exists at D=1.94 nm �the resonance as-
sociated with �j , �m��= �1,0�	 even for an abnormally large
magnetic field of about 1000 T. Similar behavior is found for
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the resonance at D=3.21 nm with �j ,m�= �2,0�. Note that in
Fig. 1 two neighboring resonances with �j ,m�= �2,0� �D
=3.21 nm	 and �j , �m��= �1,5� �D=3.28 nm	 merge and re-
sult in one profound increase in Hc,
.

B. Quantum-size cascades

Figures 1�b� and 1�c� show two typical examples �m=0

and �m��0� of how the spatially averaged order parameter �̄
depends on H
. To discuss these results, we remark that the
quasiparticle energies can be well approximated by

Ejmk = � jmk
2 + � jmk

2 − m
BH
 , �7�

where � jmk is the single-electron energy given by Eq. �4� �at
H
 =0�, 
B stands for the Bohr magneton, and

� jmk = �
0

R

d��������ujmk����2 + �v jmk����2	 , �8�

the averaged value of the order parameter as seen by jmk
quasiparticles �R=D /2�. Equation �8� can be derived within
Anderson’s approximate solution of the BdG equations.20

This approximate solution implies that the particlelike and
holelike wave functions are chosen to be proportional to the

eigenfunctions of Ĥe �for details, see Appendix�. Note that
the dependence of � jmk on k is found to be negligible: � jmk
=� jm �see Eq. �A6�	. As follows from Eq. �7�, quasiparticles
with m�0 are moved down in energy by H
. Each time
when a quasiparticle branch specified by a positive m

touches zero, a jump in �̄ occurs. When a branch controlling

a resonant enhancement approaches zero, �̄ jumps down to

zero and the superconducting solution disappears �see Fig.
1�c�	. Other quasiparticle branches are less important �due to
a smaller density of states� and are responsible for small
�sometimes almost insignificant� jumps in �̄. In particular, at
D=1.94 nm the first small jump in �̄ �see Fig. 1�b�	 is lo-
cated at H
 =33.5 T. Here the branch with j=0,m=2 touches
zero �see Fig. 2�. The insets in Fig. 1�b� show details of
jumps in �̄. As seen, there are clear signatures of hysteretic
behavior: in the vicinity of any jump, the BdG equations
have two possible solutions.

To properly clarify details of the hysteretic behavior, we
performed a numerical analysis for sufficiently large values
of the unit-cell length L, controlling periodic boundary con-
ditions in the longitudinal direction. In particular, the limit
L→� can be approached only when L�10–20 
m �L /D
�105�. For m=0 the last term in Eq. �7� is “switched off”

and so �̄ exhibits only a sequence of small jumps for the
resonances governed by m=0 �see Fig. 1�b�	. For any quasi-
particle branch an energy gap �E

�jm� �see Fig. 2� can be intro-
duced, and the total excitation energy gap is defined as �E

=min �E
�jm�. Stress that in general, � jm��E

�jm�, only at H


=0 we have �E=min � jm. Thus, a jump in �̄ appears when
one of �E

�jm� becomes zero. In particular, the left-side inset in
Fig. 1�b� shows that there exist two solutions in the interval
from H
 =32.94 T to H
 =33.5 T �the first jump in the order
parameter as a function of H
�. For the upper solution we
have �E=�0,20 that decreases linearly with H
 until touch-
ing zero at H
 =33.5 T �see the quasiparticle energies corre-
sponding to the upper solution and given in Figs. 2�a� and
2�b� for H
 =0 and H
 =33.5 T, respectively	. For the lower
solution �E

�0,2�=0 and so the gapless regime is realized with
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FIG. 1. �Color online� �a� Critical parallel magnetic field Hc,
 versus the nanowire diameter D, and spatially averaged order parameter �̄
as function of H
 for the resonant diameters �b� D=1.94 nm �governed by �j , �m��= �1,0�	 and �c� D=3.1 nm �governed by �j , �m��
= �1,2�	.
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�E=�E
�0,2�=0. For more detail, Fig. 2�c� shows how

mink Ejmk varies with H
 for D=1.94 nm. As seen, each rel-
evant quasiparticle branch exhibits signatures of two small
jumps �corresponding to the jumps in the order parameter
given in Fig. 2�b�	. After the first jump mink E0,2,k�0 �see
the inset� and so �E

�0,2�=0. After the second jump �for H


�55.85 T� mink E0,1,k becomes negative and, hence, we get
�E=�E

�0,1�=�E
�0,2�=0. In the near vicinity of the second jump,

for 55.7 T�H
 �55.85 T, we again find two nonzero solu-
tions for the BdG equations: �E

�0,1��0 for the upper solution
�except of the edge point H
 =55.85 nm� and �E

�0,1�=0 for the
lower one. Above, we discussed only numerical results for
the resonances. The same conclusions hold for the off-

resonant points. However, the eventual jump to zero in �̄ at
H
 =Hc,
 is, of course, much less pronounced in this case.

Now the question arises: what is the physics underlying
these cascades of jumps in the order parameter? A jump
appears when one of the relevant quasiparticle branches
touches zero. From this point on, such a branch “supplies”
the system with states having negative quasiparticle energies
�see the discussion about Eq. �3� in Sec. II	. For such quasi-
particles fn=1 at zero temperature or, in other words, these
quasiparticles survive even at T=0. It means that we face a
reconstruction of the ground state. To have a feeling about
such a reconstruction, let us consider the multiband Bardeen-
Cooper-Schrieffer �BCS� ansatz for the ground-state wave
function �see Appendix, Eq. �A9�	. This ansatz reads

��� = �
j,m,k

�Ujmk
� − Vjmk

� aj,m,k↑
† aj,−m,−k↓

† ��0� , �9�

where aj,m,k↑
† �aj,m,k↑� is the creation �annihilation� operator

for electrons in the state j ,m ,k with the z spin projection ↑,
and Ujmk and Vjmk are given by

Ujmk =� d3r� jmk
� �r�ujmk�r� , �10a�

Vjmk =� d3r� jmk
� �r�v jmk�r� , �10b�

with � jmk�r� being the eigenfunction of Ĥe �the term �A2�r�
can be neglected, see, for instance, Ref. 15	,

� jmk�r� =2

R
Jm�� jm

R
�� eım�

2	

eikz

L
, �11�

where Jm�x� is the mth order Bessel function, and � jm is its
jth zero. When a quasiparticle with a negative energy ap-
pears at T=0 �say, with the quantum numbers j� ,m� ,k� ,↑�,
the ground state given by Eq. �9� should be abandoned in
favor of

� j�,m�,k�,↑
† ��� = aj�,m�,k�,↑

† �
jmk�

j�m�k�

�Ujmk
� − Vjmk

� aj,m,k,↑
† aj,−m,−k,↓

† ��0� ,

�12�

where � j�,m�,k�,↑
† stands for the quasiparticle creation operator,

� j�,m�,k�,↑
† = Uj�m�k�aj�,m�,k�↑

† + Vj�m�k�aj�,−m�,−k�,↓.

As seen, Eq. �12� differs from Eq. �9� due to the sector
j� ,m� ,k�: in Eq. �12� we simply have the single-electron
creation operator rather than the Cooper-pair correlation term
including the product aj,m,k,↑

† aj,−m−k,↓
† . Therefore, the recon-

struction mentioned above is due to the depairing of elec-
trons. For instance, as seen from Figs. 2�b� and 2�c�, the
quasiparticle branch with j=0,m=2 touches zero at H


=33.5 T and, at higher magnetic fields, acquires negative
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FIG. 2. �Color online� The quasiparticle energies Ejmk versus k for the four relevant branches �j ,m�= �0,0� , �0, �1� , �0, �2� and �1,0� at
�a� H
 =0 and �b� H
 =33.5 T for the resonant diameter D=1.94 nm. In this case there are two nonzero solutions of the BdG equations for
32.9 T�H
 �33.5 T �see the left-side inset in Fig. 1�b�	, the upper one disappears at H
 =33.5 T �panel �b�	 when the quasiparticle branch
�0,2� touches zero. �c� The quantity mink Ejmk versus H
 for the different quasiparticle branches at D=1.94 nm.
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energies. This gives rise to the depairing of electrons in the
single-electron subband j=0,m=2, which results in the drop
of the order parameter �see the left-side inset in Fig. 1�b�	.
Note that such a drop occurs not only due to a decay of the
Cooper pairs in the subband j=0,m=2. Throughout the self-
consistency relation �Eq. �3�	, such a decay influences and
reduces the contributions of all other subbands. However, the
binding energies of the Cooper pairs in these subbands are
somewhat reduced rather than the depairing of electrons oc-
curs. In Fig. 3 the order parameter is plotted together with
the contributions of different single-electron subbands for the
upper �Figs. 3�a� and 3�b�	 and lower �Figs. 3�c� and 3�d�	
solutions of the BdG equations at H
 =33.5 T and D
=1.94 nm. Comparing panels �a� and �c�, we find that the
order parameter decreases slightly by a few percent, which

results in a small jump of �̄ in Fig. 1�b� �the left-side inset�.
From Figs. 3�b� and 3�d�, we can see that all the subband
contributions are also reduced by a few percent when passing
from the upper to the lower solution, except for j=0,m=2.
For j=0,m=2 we have a significant drop by a factor of 1.5,
which is a manifestation of electron depairing. In a quasi-
one-dimensional system there is a set of single-electron sub-
bands contributing to the order parameter, and so the depair-
ing process occurs as a quantum-size cascade of jumps.

C. Effect of thickness

In the previous subsection, for the sake of simplicity, we
considered extremely small diameters. So the question arises

about the effect of thickness. In Fig. 4�a� �̄ is plotted as a
function of H
 and D for larger diameters, i.e., D=4–6 nm.
We see that the quantum-size oscillations in Hc,
 are corre-
lated �as to the positions of the resonances� with the corre-

sponding oscillations in �̄. However, contrary to the �̄ reso-
nances, amplitudes of resonant enhancements in Hc,
 are
mainly determined by �m�. The most profound increases in
Hc,
 correspond to m=0 and appear at D=4.55 and 5.9 nm.

Signatures of jumps in �̄ can again be observed �see, also,
the contour plot given in Fig. 4�b�	. For instance, at D

=4.22 nm the averaged order parameter �̄ jumps from a
value about 2 meV down to zero at H
 =Hc,
 =6 T. At D
=4.77 nm a jump of about 1 meV occurs at H
 =Hc,
 =4 T.

For the off-resonant values of D we also have jumps in �̄ but
less pronounced. Note that the resonant enhancements in the
superconducting condensate governed by j=3,m=0 and j
=4,m=0 are very stable against H
 but decay significantly
faster as compared to the situation of smaller diameters.

The number of relevant single-electron subbands scales as
�D2, which results in complex patterns of the hysteretic be-

havior accompanying the jumps in �̄ at larger diameters. An
example of such a complex pattern is shown in Fig. 5, where

details of the first jump in �̄�H
� are given for D=4.26 nm
�the half-decay point of the resonance appearing at D
=4.22 nm�. In this case there are two hysteretic loops. The
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FIG. 3. �Color online� The upper ��a�, �b�	 and lower ��c�, �d�	
solutions of the BdG equations at H
 =33.5 T �the resonant diam-
eter D=1.94 nm�: �a� and �c�, the order parameter ����; �b� and
�d�, the corresponding contribution of the different relevant single-
electron subbands.

FIG. 4. �Color online� �a� Averaged order parameter �̄ as a
function of H
 and D for diameters 4–6 nm and �b� the contour plot
of this function. The dashed curve in �b� shows the GL result for the
critical magnetic field.

MAGNETIC-FIELD INDUCED QUANTUM-SIZE CASCADES… PHYSICAL REVIEW B 78, 024505 �2008�

024505-5



larger loop is realized for 3.02 T�H
 �3.16 T �see panel
�a�	. Surprisingly, it includes a smaller hysteretic loop arising
for 3.08 T�H
 �3.1 T. In this magnetic-field range there
exist three solutions of the BdG equations. Low-lying quasi-
particle energies for each of these solutions are given in Figs.
5�b�–5�d� for H
 =3.09 T. As seen, all the quasiparticle en-
ergies are positive for the upper solution �panel �b�	, which is
the gap regime and �E=�0,7�0. For the middle solution
�panel �c�	 we have mink E0,7,k�0, and so �0,7=0. This is a
signature of the depairing of electrons in the subband with
j=0,m=7. For the lowest solution �panel �d�	 the decay of
the Cooper pairs occurs in the two single-electron subbands
with the quantum numbers j=0,m=7 and j=0,m=6. For
both the middle and lowest solution negative quasiparticle,
energies make a contribution to the problem, which is typical
of the gapless regime.

Note that the GL theory is not able to give the found
quantum-size cascades and the quantum-size oscillations in
the critical magnetic field �due to the absence of quantum
confinement in the GL formalism�. When using a simplified
estimate based on the GL formula12,13 Hc,


�GL�=8.0�Hc,bulk /D
�with � the magnetic penetration depth� together with the
zero-temperature expectations ��50 nm and Hc=0.01 T
for Al in the clean limit8�, we obtain the dashed curve in Fig.
4�b�, which gives roughly the averaged trend for Hc,
 found
with the BdG formalism.

For thicker mesoscopic wires with D�20 nm, the role of
any given quasiparticle branch becomes much less signifi-
cant, and quantum-size oscillations in the superconducting

properties are strongly reduced. In this regime we recover the
smooth superconducting-to-normal transition, in agreement
with the previous theoretical results15 and recent experimen-
tal observations.1,17,21

D. Pauli paramagnetism

We remark that in the current approach we neglected
Pauli paramagnetism entirely and included only orbital ef-
fects. This is justified when the paramagnetic �Pauli� limiting
field22

HP =
�E�H = 0�

2
B

is larger than the orbital values of Hc,
 �note that �̄��E at
zero magnetic field�. From Fig. 4�b� one can estimate that
HP�23 T �12, 14, 16, 11, 9, and 14 T� versus Hc,
 �6 T �9,
4, 11, 3, 2, and 4 T� at D=4.22 nm �4.45, 4.77, 5.2, 5.33,
5.68, and 5.85 nm�. As seen, Pauli paramagnetism is only
crucial for the resonances governed by m=0, i.e., at D
=4.55 and 5.88 nm, and it can produce some minor correc-
tions to the resonances governed by �m�=1 �see, for instance,
D=5.2 nm� and by �m�=2 �see, for example, D=4.45 nm�.
However, most of the resonant enhancements for D�5 nm
are produced by the states with �m��2 �the larger the diam-
eter, the smaller the relative number of resonances labeled by
�m��2�.

Thus, our numerical results are not very sensitive to the
spin-magnetic interaction for D�5 nm, whereas signatures
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of jumps in �̄ are observed up to D�10–15 nm. In particu-

lar, Fig. 6 shows �̄ �Fig. 6�a�	 and �E �Fig. 6�b�	 versus H
 at
D=10.86 nm �HP=3.9 T� and D=11.24 nm �HP=4.5 T�.
The energy gap decays as a set of lines with different slopes,
which reflects the linear dependence of Ejmk on H
 in Eq. �7�.
It is remarkable that only jumps to zero in �̄ are clearly seen
in Fig. 6�a�: a cascade of preceding small jumps has nearly
collapsed into a continuous curve.

IV. CONCLUDING REMARKS

The quantization of the transverse electron motion in
high-quality nanowires results in the splitting of the single-
electron band into a series of subbands. Based on a numeri-
cal solution of the Bogoliubov-de Gennes equations for a
clean metallic nanocylinder, we showed that such a splitting
leads to important qualitative changes in the interplay of
superconductivity and magnetic field in nanowires with
diameters �10–15 nm. At zero temperature the
superconducting-to-normal transition driven by a parallel
magnetic field occurs as a cascade of jumps in the order
parameter �a second-order phase transition is realized for me-
soscopic wires�. At the same time the critical magnetic field
exhibits quantum-size oscillations with pronounced resonant
enhancements.

Our results are for nanowires with uniform cross section
along the wire. Real samples will exhibit inevitable cross-
section fluctuations that will smooth the quantum-size oscil-

lations of superconducting properties, resulting in an overall
enhancement with decreasing thickness �for Hc,
 this en-
hancement can follow the simple estimate based on the GL
theory, see Fig. 3�b�	. Such a monotonical increase in Tc has
recently been found in Al and Sn nanowires.11 At present, the
parallel critical magnetic field has been measured in Sn
�Refs. 1 and 21� and Zn �Ref. 17� wires with diameters down
to 20 nm. These nanowires were found to be still in the
mesoscopic regime. It is expected that data on Hc,
 for D
�20 nm will be available in the near future.

Note that, on the qualitative level, our results are not sen-
sitive to the specific confining geometry; the only thing that
is of importance is the formation of the single-electron sub-
bands. Thus, the same conclusions should hold for supercon-
ducting high-quality films �but not for nanograins where the
orbital effects are known to be negligible, see, for instance,
Refs. 23 and 24�. It is well known25,26 that for ultrathin films
the paramagnetic breakdown of the Cooper pairing results in
a first-order superconducting-to-normal transition driven by
a parallel magnetic field �provided that the effect of the spin-
orbital scattering is not very significant and the temperature
is close to zero�. We expect that the quantum-size cascades
can precede this paramagnetic breakdown. Fluctuations in
thickness can somewhat destroy the cascades, and so atomi-
cally uniform high-quality nanofilms can be quite good to
observe the orbital effects predicted in this paper.
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APPENDIX: ANDERSON’S APPROXIMATE SOLUTION

To have an idea about the validity of Eqs. �7� and �8�, it is
instructive to consider Anderson’s approximate solution to
the BdG equations.20 The main assumption is that un�r� and

vn�r� are proportional to the eigenfunction of Ĥe given by

Eq. �11� �the term �A2�r� in Ĥe can be ignored	,

un�r� = Un�n�r�, vn�r� = Vn�n�r� , �A1�

with n= �j ,m ,k�. Note that Ujmk and Vjmk are the same as in
Eqs. �10a� and �10b�. Inserting Eqs. �A1� into Eqs. �1a� and
�1b�, we recast the BdG equations into

EjmkUjmk = �� jmk − 
BmH
	Ujmk + � jmkVjmk, �A2a�

EjmkVjmk = � jmk
� Ujmk − �� jmk + 
BmH
	Vjmk, �A2b�

where � jmk=� jmk
� �the order parameter is chosen as real� is

given by Eq. �8�, 
B stands for the Bohr magneton, and � jmk
�the single-electron energy at H
 =0, see the discussion next
to Eq. �4�	 is of the form

� jmk =
�2

2me
�� jm

2

R2 + k2� − EF, �A3�

with � jm the jth zero of the mth order Bessel function.
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FIG. 6. �Color online� �a� Spatially averaged order parameter �̄
and �b� the energy gap �E versus H
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Equations �A2a� and �A2b� have a nontrivial solution only
when the relevant determinant is zero,

�Ejmk − � jmk + 
BmH
 − � jmk

− � jmk Ejmk + � jmk + 
BmH


� = 0,

which leads to

Ejmk = � � jmk
2 + � jmk

2 − 
BmH
 , �A4�

where the + sign corresponds to the physical solution. This
explains Eq. �7� used for the interpretations of our numerical
results in Sec. III. Taking into account the normalization con-
dition �Ujmk and Vjmk are real�

Ujmk
2 + Vjmk

2 = 1, �A5�

together with Eqs. �8� and �A1�, one can find that � jmk does
not depend on k �see our discussion after Eq. �8�	,

� jmk = � jm =
2

R
�

0

R

d��Jm
2 �� jm

R
������ . �A6�

Now, for a given � jm, Eqs. �A2a� and �A2b� can be solved
analytically, which results in �for the physical Ejmk�

Ujmk
2 =

1

2�1 +
� jmk

� jmk
2 + � jm

2 � , �A7a�

Vjmk
2 =

1

2�1 −
� jmk

� jmk
2 + � jm

2 � , �A7b�

UjmkVjmk =
� jm

2� jmk
2 + � jm

2
. �A7c�

It is worth noting that the magnetic field is not present ex-
plicitly in Eqs. �A7a� and �A7b�, and Ujmk and Vjmk depend
on H
 only through � jm. Equations �A1�, �A7a�, and �A7b�
make it possible to rewrite Eq. �3� in the form of the follow-
ing BCS-like self-consistency equation:

� j�m� = − �
jmk

Vj�m�,jm
� jm tanh��Ejmk/2�

2� jmk
2 + � jm

2
, �A8�

with � the inverse temperature and the pair-interaction ma-
trix element

Vj�m�,jm = −
2g

	R2L
�

0

R

d��Jm�
2 �� j�m�

R
��Jm

2 �� jm

R
�� .

The summation in Eq. �A8� is over the physical states with
� jmk being in the Debye window, �� jmk����D.

Note that Eqs. �A1� is exact only when ����=const,
which is not the case in the presence of quantum confine-
ment. However, one can expect that Anderson’s approxima-
tion is good enough when the Cooper pairing of electrons
from different subbands is negligible, i.e., for narrow wires
with a strong impact of the transverse quantization. This ex-
pectation is in agreement with our numerical results reveal-
ing that Anderson’s approximation is accurate within a few
percent when D�5–10 nm. In particular, according to Eq.
�A8�, the superconducting order parameter is constant at zero
temperature until quasiparticles with negative energies ap-
pear: tanh��E /2�→1 for �→� when E�0, whereas
tanh��E /2�→−1 in the opposite case. This explains why �̄
given in Figs. 1, 5, and 6 is practically independent of H


before the gapless regime.
As mentioned above, Anderson’s solution is a good ap-

proximation when the Cooper-pairing of electrons from dif-
ferent subbands plays a minor role. So, Anderson’s prescrip-
tion given by Eq. �A1� is equivalent to the multiband BCS
model whose Hamiltonian can be written as �n= �j ,m ,k��

Ĥ = �
n

�
�

��n − 
BmH
�an�
† an�

+
1

2�
nn�

�
�

Vjm,j�m�an�
† an̄−�

† an̄�−�an��, �A9�

with n̄= �j ,−m ,−k� and � the electron spin projection. Com-
paring Eq. �A9� with the bulk-reduced BCS Hamiltonian,
one can easily generalize the well-known BSC ansatz for the
bulk ground-state wave function to the multiband ansatz
given by Eq. �9� in Sec. III.
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